Binomial Theorem
Master the Binomial Theorem with this comprehensive study guide. Learn Pascal's Triangle, binomial coefficients, and how to expand binomial expressions. Includes 8 worked examples with step-by-step video solutions.
Understanding the Binomial Theorem
Study Guide - Understanding Binomial Theorem
Understanding Binomial Expansions
Pascal's Triangle

How to Use Pascal's Triangle
Binomial Coefficients
Practice Questions with Video Solutions
Watch step-by-step video explanations for each question to master the concepts
Question
Find, in ascending powers of $x$, the first four terms in the expansion of $(2-3x)^6$.
Video Solution
Step-by-Step Solution
- 1From the question, we know that $a=2$, $b=-3x$ and $n=6$.
- 2Substitute the values into the formula and expand it.
- 3$(2-3x)^6 = \binom{6}{0}(2)^6(-3x)^0 + \binom{6}{1}(2)^5(-3x)^1 + \binom{6}{2}(2)^4(-3x)^2 + \binom{6}{3}(2)^3(-3x)^3 + \ldots$
- 4$= (1)(2)^6(1) + 6(2)^5(-3x) + 15(2)^4(-3)^2x^2 + 20(2)^3(-3)^3x^3 + \ldots$
- 5$= 64 - 576x + 2160x^2 - 4320x^3 + \ldots$
Question
Find, in ascending powers of $x$, the first four terms in the expansion of $\left(2x + \frac{y}{4}\right)^6$.
Video Solution
Step-by-Step Solution
- 1From the question, we know that $a=2x$, $b=\frac{y}{4}$ and $n=6$.
- 2Substitute the values into the formula and expand it.
- 3$\left(2x + \frac{y}{4}\right)^6 = \binom{6}{0}(2x)^0\left(\frac{y}{4}\right)^6 + \binom{6}{1}(2x)^1\left(\frac{y}{4}\right)^5 + \binom{6}{2}(2x)^2\left(\frac{y}{4}\right)^4 + \binom{6}{3}(2x)^3\left(\frac{y}{4}\right)^3 + \ldots$
- 4$= (1)(1)\frac{y^6}{4^6} + \frac{6(2)}{4^5}xy^5 + \frac{15(2)^2}{4^4}x^2y^4 + \frac{20(2)^3}{4^3}x^3y^3 + \ldots$
- 5$= \frac{1}{4096}y^6 + \frac{3}{256}xy^5 + \frac{15}{64}x^2y^4 + \frac{5}{2}x^3y^3 + \ldots$
Question
Evaluate the following without using a calculator: (a) $\binom{10}{3}$ (b) $\binom{n+2}{2}$ in terms of $n$ (c) $\binom{n+1}{n}$ in terms of $n$ (d) $\binom{n}{n}$ in terms of $n$
Video Solution
Step-by-Step Solution
- 1(a) $\binom{10}{3} = \frac{10!}{3!(10-3)!} = \frac{10!}{3!7!} = \frac{10 \cdot 9 \cdot 8 \cdot 7!}{3 \cdot 2 \cdot 1 \cdot 7!} = 120$
- 2(b) $\binom{n+2}{2} = \frac{(n+2)!}{2!(n+2-2)!} = \frac{(n+2)!}{2 \cdot n!} = \frac{(n+2)(n+1)n!}{2 \cdot n!} = \frac{(n+2)(n+1)}{2}$
- 3(c) $\binom{n+1}{n} = \frac{(n+1)!}{n!(n+1-n)!} = \frac{(n+1)!}{n!1!} = \frac{(n+1)n!}{n!} = n+1$
- 4(d) $\binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n!0!} = 1$
Question
Find, in ascending powers of $x$, the first three terms in the expansion of $\left(2 - \frac{x}{2}\right)^6$. Hence, find the coefficient of $x^2$ in the expansion of $(x+1)^2\left(2 - \frac{x}{2}\right)^6$.
Video Solution
Step-by-Step Solution
- 1First, find the first three terms of $\left(2 - \frac{x}{2}\right)^6$:
- 2$\left(2 - \frac{x}{2}\right)^6 = \binom{6}{0}(2)^6\left(-\frac{x}{2}\right)^0 + \binom{6}{1}(2)^5\left(-\frac{x}{2}\right)^1 + \binom{6}{2}(2)^4\left(-\frac{x}{2}\right)^2 + \ldots$
- 3$= 2^6 + 6(2)^5\left(-\frac{1}{2}\right)x + 15(2)^4\left(-\frac{1}{2}\right)^2x^2 + \ldots$
- 4$= 64 - 96x + 60x^2 + \ldots$
- 5Then, multiply $(x+1)^2$ to find the coefficient of $x^2$:
- 6$(x+1)^2\left(2 - \frac{x}{2}\right)^6 = (x^2 + 2x + 1)(64 - 96x + 60x^2 + \ldots)$
- 7We only need terms that produce $x^2$: $64x^2 - 96x(2x) + 1(60x^2)$
- 8$= 64x^2 - 192x^2 + 60x^2 = -68x^2$
- 9Therefore, coefficient of $x^2 = -68$
Question
In the expansion of $(1-2x)^n$, where $n$ is a positive integer, in the ascending powers of $x$, the coefficient of the third term is $112$. Find the value of $n$.
Video Solution
Step-by-Step Solution
- 1Expand the term $(1-2x)^n$ to find the third term:
- 2$(1-2x)^n = \binom{n}{0}(1)^n(-2x)^0 + \binom{n}{1}(1)^{n-1}(-2x)^1 + \binom{n}{2}(1)^{n-2}(-2x)^2 + \ldots$
- 3Third term $= \binom{n}{2}(-2x)^2 = \left[\frac{n(n-1)}{2!}\right](-2)^2x^2$
- 4Compare the coefficient of the third term with $112$:
- 5$\left[\frac{n(n-1)}{2}\right] \cdot 4 = 112$
- 6$2n(n-1) = 112$
- 7$n(n-1) = 56$
- 8$n^2 - n - 56 = 0$
- 9$(n-8)(n+7) = 0$
- 10Therefore $n = 8$ ($n = -7$ is rejected as $n > 0$)
Question
Find the term independent of $x$ in the expansion of $\left(x^3 - \frac{1}{2x}\right)^{12}$.
Video Solution
Step-by-Step Solution
- 1Note that term independent of $x$ refers to the term where the degree of $x = 0$, i.e., $x^0$.
- 2Find the general term of $\left(x^3 - \frac{1}{2x}\right)^{12}$:
- 3$\left(x^3 - \frac{1}{2x}\right)^{12} = \ldots + \binom{12}{r}(x^3)^{12-r}\left(-\frac{1}{2x}\right)^r + \ldots$
- 4$= \binom{12}{r}x^{3(12-r)}\left(-\frac{1}{2}\right)^r(x^{-1})^r$
- 5$= \binom{12}{r}\left(-\frac{1}{2}\right)^rx^{36-3r-r}$
- 6$= \binom{12}{r}\left(-\frac{1}{2}\right)^rx^{36-4r}$
- 7For the power of $x$ to be zero: $x^0 = x^{36-4r}$
- 8$0 = 36 - 4r$
- 9$r = 9$
- 10Substitute $r=9$ into the general term:
- 11$\binom{12}{9}\left(-\frac{1}{2}\right)^9 = -\frac{55}{128}$
Question
Find the value of $n$ in $(1+2x)^n$, given that the coefficients of $x^2$ and $x^3$ are in the ratio of $3:14$.
Video Solution
Step-by-Step Solution
- 1Write down the general form of $(1+2x)^n$:
- 2$(1+2x)^n = \binom{n}{r}(1)^{n-r}(2x)^r$
- 3General form $= \binom{n}{r}2^rx^r$
- 4Find the coefficient of $x^2$; Substitute $r=2$:
- 5Coefficient of $x^2 = \binom{n}{2}2^2 = \left[\frac{n(n-1)}{2!}\right](4) = 2n(n-1)$
- 6Find the coefficient of $x^3$; Substitute $r=3$:
- 7Coefficient of $x^3 = \binom{n}{3}2^3 = \left[\frac{n(n-1)(n-2)}{3!}\right](8) = \frac{4}{3}n(n-1)(n-2)$
- 8Given that coefficient of $x^2 : x^3 = 3:14$
- 9$\frac{2n(n-1)}{\frac{4}{3}n(n-1)(n-2)} = \frac{3}{14}$
- 10$\frac{2}{\frac{4}{3}(n-2)} = \frac{3}{14}$
- 11$2(14) = 3\left[\frac{4(n-2)}{3}\right]$
- 12$28 = 4(n-2)$
- 13$n = \frac{28}{4} + 2 = 9$
Question
Obtain the first 4 terms in the expansion, in ascending powers of $x$, of $(1-4x)^5$. Hence, find the value of $(0.96)^5$ correct to 3 decimal places.
Video Solution
Step-by-Step Solution
- 1Expand the term $(1-4x)^5$ to find the first four terms:
- 2$(1-4x)^5 = \binom{5}{0}(1)^5(-4x)^0 + \binom{5}{1}(1)^4(-4x)^1 + \binom{5}{2}(1)^3(-4x)^2 + \binom{5}{3}(1)^2(-4x)^3 + \ldots$
- 3$= 1 \cdot 1 \cdot 1 + 5 \cdot 1 \cdot (-4x) + 10(1)(16x^2) + 10(1)(-64)x^3 + \ldots$
- 4$= 1 - 20x + 160x^2 - 640x^3 + \ldots$
- 5Compare $(1-4x)^5$ with $(0.96)^5$:
- 6$1 - 4x = 0.96$
- 7$4x = 0.04$
- 8$x = 0.01$
- 9Substitute $x=0.01$ into the expansion:
- 10$(1-4(0.01))^5 \approx 1 - 20(0.01) + 160(0.01)^2 - 640(0.01)^3$
- 11$\approx 1 - 0.2 + 0.016 - 0.00064$
- 12$\approx 0.81536$
- 13$(0.96)^5 \approx 0.815$ (3 d.p.)
Key Formulas to Remember
$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{r}a^{n-r}b^r + \ldots + b^n$Note: This formula is given in the Additional Mathematics Formulae Sheet during GCE O Level Examination
$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\ldots(n-r+1)}{r!}$Note: Also written as $^nC_r$
$T_{r+1} = \binom{n}{r} \times a^{(n-r)} \times b^r$Note: For the expansion of $(a+b)^n$, the $(r+1)$th term
$0! = 1$$\binom{n}{0} = 1$$\binom{n}{1} = n$$\binom{n}{2} = \frac{n(n-1)}{2!}$$\binom{n}{3} = \frac{n(n-1)(n-2)}{3!}$$\binom{n}{n} = 1$
Ready to Master Additional Math?
Sign up for our Free Mini-Courses and try our well-structured curriculum to see how it can help maximize your learning in mathematics online.