Indices: Master the Laws of Indices for O Level Additional Math
Master the laws of indices with this comprehensive study guide. Learn zero indices, negative indices, rational indices, and how to solve exponential equations. Includes 7 practice questions with step-by-step video solutions.
What Are Indices?
Study Guide - Introduction to Index Notation
Laws of Indices
Study Guide - Laws of Indices
Zero Indices
Study Guide - Zero Indices
Negative Indices
Study Guide - Negative Indices
Positive nth Root
Study Guide - Positive nth Root
Rational Indices
Study Guide - Rational Indices
Equations Involving Indices
Study Guide - Equations involving Indices
Solving Exponential Equations Using Substitution
Simultaneous Exponential Equations
Practice Questions with Video Solutions
Watch step-by-step video explanations for each question to master indices concepts. Perfect for O Level Additional Math exam preparation in Singapore.
Question
Simplify each of the following: (i) ${{a}^{7}}\times {{a}^{3}}$ ÷ ${{\left( {{a}^{3}} \right)}^{2}}$ (ii) ${{\left( {{2}^{b}} \right)}^{5}}$ ÷ $8{{b}^{2}}$ (iii) ${{\left( \frac{3{{x}^{2}}}{{{x}^{3}}} \right)}^{3}}$ ÷ $\frac{27{{x}^{7}}}{{{x}^{21}}}$ (iv) ${{\left( {{c}^{2}}d \right)}^{4}}\times {{\left( {{c}^{4}}{{d}^{3}} \right)}^{5}}$ (v) $5{{\left( ef \right)}^{3}}\times 10e{{f}^{2}}$ (vi) $16{{m}^{8}}{{n}^{7}}$ ÷ ${{\left( -2{{m}^{3}}{{n}^{2}} \right)}^{2}}$ (vii) ${{\left( \frac{{{p}^{2}}}{q} \right)}^{6}}\times {{\left( \frac{2{{q}^{2}}}{-3{{p}^{5}}} \right)}^{3}}$
Video Solution
Step-by-Step Solution
- (i) ${{a}^{7}}\times {{a}^{3}}$ ÷ ${{\left( {{a}^{3}} \right)}^{2}} = {{a}^{7}}\times {{a}^{3}}$ ÷ ${{a}^{6}} = {a}^{7+3-6} = {a}^{4}$
- (ii) ${{\left( {{2}^{b}} \right)}^{5}}$ ÷ $8{{b}^{2}} = \frac{{{\left( 2b \right)}^{5}}}{8{{b}^{2}}} = \frac{{{2}^{5}}\cdot {{b}^{5}}}{8{{b}^{2}}} = \frac{{{2}^{5}}}{8}{{b}^{5-2}} = 4{{b}^{3}}$
- (iii) ${{\left( \frac{3{{x}^{2}}}{{{x}^{3}}} \right)}^{3}}$ ÷ $\frac{27{{x}^{7}}}{{{x}^{21}}} = \frac{{{3}^{3}}\cdot {{\left( {{x}^{2}} \right)}^{3}}}{{{\left( {{x}^{3}} \right)}^{3}}}\times \frac{{{x}^{21}}}{27{{x}^{7}}} = \frac{27{{x}^{6}}}{{{x}^{9}}}\times \frac{{{x}^{21}}}{27{{x}^{7}}} = \frac{{{x}^{6+21}}}{{{x}^{9+7}}} = {{x}^{27-16}} = {{x}^{11}}$
- (iv) ${{\left( {{c}^{2}}d \right)}^{4}}\times {{\left( {{c}^{4}}{{d}^{3}} \right)}^{5}} = {{\left( {{c}^{2}} \right)}^{4}}{{d}^{4}}\times {{\left( {{c}^{4}} \right)}^{5}}{{\left( {{d}^{3}} \right)}^{5}} = {{c}^{8}}{{d}^{4}}{{c}^{20}}{{d}^{15}} = {{c}^{28}}{{d}^{19}}$
- (v) $5{{\left( ef \right)}^{3}}\times 10e{{f}^{2}} = 5{{e}^{3}}{{f}^{3}}\times 10{{e}^{1}}{{f}^{2}} = 50{{e}^{3+1}}{{f}^{3+2}} = 50{{e}^{4}}{{f}^{5}}$
- (vi) $16{{m}^{8}}{{n}^{7}}$ ÷ ${{\left( -2{{m}^{3}}{{n}^{2}} \right)}^{2}} = \frac{16{{m}^{8}}{{n}^{7}}}{4{{m}^{6}}{{n}^{4}}} = 4{{m}^{2}}{{n}^{3}}$
- (vii) ${{\left( \frac{{{p}^{2}}}{q} \right)}^{6}}\times {{\left( \frac{2{{q}^{2}}}{-3{{p}^{5}}} \right)}^{3}} = \frac{{{p}^{12}}}{{{q}^{6}}}\times \frac{8{{q}^{6}}}{-27{{p}^{15}}} = -\frac{8}{27}{{p}^{-3}}$
Question
Simplify each of the following, giving your answers in positive index notation: (i) $18{{a}^{-6}}$ ÷ $3{{\left( {{a}^{-2}} \right)}^{2}}$ (ii) $5{{b}^{0}}\times 3{{\left( {{b}^{-2}} \right)}^{2}}$ (iii) ${{\left( 3{{c}^{2}}{{d}^{-2}} \right)}^{2}}$ (iv) ${{\left( \frac{{{e}^{2}}{{f}^{-1}}}{2} \right)}^{-3}}$
Video Solution
Step-by-Step Solution
- (i) $18{{a}^{-6}}$ ÷ $3{{\left( {{a}^{-2}} \right)}^{2}} = 18\left( \frac{1}{{{a}^{6}}} \right)\times \frac{1}{3{{a}^{-4}}} = 6\left( \frac{1}{{{a}^{6}}} \right)\times \frac{1}{{{a}^{-4}}} = \frac{6}{{{a}^{2}}}$
- (ii) $5{{b}^{0}}\times 3{{\left( {{b}^{-2}} \right)}^{2}} = 5\left( 1 \right)\times 3\left( {{b}^{-4}} \right) = 15{{b}^{-4}} = \frac{15}{{{b}^{4}}}$
- (iii) ${{\left( 3{{c}^{2}}{{d}^{-2}} \right)}^{2}} = {{3}^{2}}{{\left( {{c}^{2}} \right)}^{2}}{{\left( {{d}^{-2}} \right)}^{2}} = 9{{c}^{4}}{{d}^{-4}} = \frac{9{{c}^{4}}}{{{d}^{4}}}$
- (iv) ${{\left( \frac{{{e}^{2}}{{f}^{-1}}}{2} \right)}^{-3}} = {{\left( \frac{2}{{{e}^{2}}{{f}^{-1}}} \right)}^{3}} = \frac{8}{{{e}^{6}}{{f}^{-3}}} = \frac{8{{f}^{3}}}{{{e}^{6}}}$
Question
Evaluate each of the following without the use of a calculator: (i) $\sqrt[4]{16}$ (ii) $\sqrt[3]{\frac{27}{125}}$
Video Solution
Step-by-Step Solution
- (i) $\sqrt[4]{16} = \sqrt[4]{{{2}^{4}}} = 2$
- (ii) $\sqrt[3]{\frac{27}{125}} = \sqrt[3]{\frac{{{3}^{3}}}{{{5}^{3}}}} = \frac{\sqrt[3]{{{3}^{3}}}}{\sqrt[3]{{{5}^{3}}}} = \frac{3}{5}$
Question
Rewrite each of the following in radical form and hence evaluate the results without using a calculator: (i) ${{81}^{\frac{1}{4}}}$ (ii) ${{8}^{-\frac{1}{3}}}$
Video Solution
Step-by-Step Solution
- (i) ${{81}^{\frac{1}{4}}} = \sqrt[4]{81} = \sqrt[4]{{{3}^{4}}} = 3$
- (ii) ${{8}^{-\frac{1}{3}}} = {{\left( {{8}^{-1}} \right)}^{\frac{1}{3}}} = {{\left( \frac{1}{8} \right)}^{\frac{1}{3}}} = \frac{1}{\sqrt[3]{8}} = \frac{1}{\sqrt[3]{{{2}^{3}}}} = \frac{1}{2}$
Question
Solve each of the equation: (i) ${2}^{x}=8$ (ii) ${5}^{y}=\frac{1}{25}$ (iii) ${9}^{x}=27$
Video Solution
Step-by-Step Solution
- (i) ${{2}^{x}}=8$ means ${{2}^{x}}={{2}^{3}}$, therefore $x=3$
- (ii) ${{5}^{y}}=\frac{1}{25}$ means ${{5}^{y}}={{5}^{-2}}$, therefore $y=-2$
- (iii) ${{9}^{z}}=27$ means ${{\left( {{3}^{2}} \right)}^{z}}={{3}^{3}}$, so ${{3}^{2z}}={{3}^{3}}$, therefore $2z=3$ and $z=\frac{3}{2}=1\frac{1}{2}$
Question
Use an appropriate substitution, or otherwise, solve ${7}^{2x+1}+20({7}^{x})=3$.
Video Solution
Step-by-Step Solution
- Rewrite the equation: ${{7}^{2x+1}}+20\left( {{7}^{x}} \right)=3$
- Simplify: ${{7}^{2x}}\cdot 7+20\left( {{7}^{x}} \right)=3$
- Further: $7{{\left( {{7}^{x}} \right)}^{2}}+20\left( {{7}^{x}} \right)-3=0$
- Let $u={{7}^{x}}$, then: $7{{u}^{2}}+20u-3=0$
- Factor: $\left( 7u-1 \right)\left( u+3 \right)=0$
- So $u=\frac{1}{7}$ or $u=-3$ (rejected, as ${{7}^{x}}>0$)
- Replace $u$ with ${7}^{x}$: ${{7}^{x}}=\frac{1}{7}={{7}^{-1}}$
- Therefore $x=-1$
Question
Solve the simultaneous equations: ${{4}^{x}}\left( {{2}^{y}} \right)=\frac{{{2}^{11}}}{{{16}^{y}}}$ ${{5}^{x}}\left( {{5}^{x-6y}} \right)=1$
Video Solution
Step-by-Step Solution
- From equation (1): ${{4}^{x}}\left( {{2}^{y}} \right)=\frac{{{2}^{11}}}{{{16}^{y}}}$
- Convert to base 2: ${{\left( {{2}^{2}} \right)}^{x}}\cdot \left( {{2}^{y}} \right)=\frac{{{2}^{11}}}{{{\left( {{2}^{4}} \right)}^{y}}}$
- Simplify: ${{2}^{2x}}\cdot {{2}^{y}}=\frac{{{2}^{11}}}{{{2}^{4y}}}$
- Combine powers: ${{2}^{2x+y}}={{2}^{11-4y}}$
- Equate indices: $2x+y=11-4y$, so $2x=11-5y$ ... (3)
- From equation (2): ${{5}^{x}}\left( {{5}^{x-6y}} \right)=1$
- Simplify: ${{5}^{x+\left( x-6y \right)}}={{5}^{0}}$
- Equate indices: $x+x-6y=0$, so $2x=6y$ and $x=3y$ ... (4)
- Substitute (4) into (3): $2\left( 3y \right)=11-5y$
- Solve: $6y=11-5y$, so $11y=11$ and $y=1$
- From (4): $x=3(1)=3$
Key Formulas to Remember for Indices
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$Note: When multiplying powers with the same base, add the indices
$\frac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$Note: When dividing powers with the same base, subtract the indices
${{({{a}^{m}})}^{n}}={{a}^{mn}}$Note: When raising a power to another power, multiply the indices
${{a}^{n}}\times {{b}^{n}}={{\left( ab \right)}^{n}}$Note: When powers have the same index, you can multiply the bases
$\frac{{{a}^{m}}}{{{b}^{m}}}={{\left( \frac{a}{b} \right)}^{m}}$Note: When powers have the same index, you can divide the bases
$a^0=1$Note: Any number (except 0) raised to the power of 0 equals 1
${a}^{-n}=\frac{1}{a^n}$Note: A negative power means the reciprocal of the positive power
${a}^{\frac{1}{n}}=\sqrt[n]{a}$Note: A fractional index represents a root
${{a}^{\frac{m}{n}}}=\sqrt[n]{{{a}^{m}}}$ or ${{\left( \sqrt[n]{a} \right)}^{m}}$Note: The numerator is the power, the denominator is the root
$a^0 = 1$ (where $a \neq 0$)$a^1 = a$$a^{-1} = \frac{1}{a}$${{\left( \frac{a}{b} \right)}^{-n}}={{\left( \frac{b}{a} \right)}^{n}}$$\sqrt[n]{a} = a^{\frac{1}{n}}$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
Ready to Master Additional Math?
Sign up for our Free Mini-Courses and try our well-structured curriculum to see how it can help maximize your learning in mathematics online.