All Years
2005 TYS
Question 14
Question
The indefinite integral $\int{\frac{\text{P}(x)}{{{x}^{3}}+1}\,\text{d}x}$, where $\text{P}\left( x \right)$ is a polynomial in $x$, is denoted by $\text{I}$.
- Find $\text{I}$ when $\text{P}(x)={{x}^{2}}$.
[2]
- By writing ${{x}^{3}}+1=\left( x+1 \right)\left( {{x}^{2}}+Ax+B \right)$, where $A$ and $B$ are constants, find $\text{I}$ when
- $\text{P}\left( x \right)={{x}^{2}}-x+1$,
[3]
- $\text{P}\left( x \right)=x+1$.
[3]
- Using the results of parts (i) and (ii), or otherwise, find $\text{I}$ when $\text{P}\left( x \right)=1$.
[4]