Applications of Integration for O Level A Math
Master practical applications of integration for O Level & IGCSE Additional Mathematics (4047/0606). Learn definite integrals, areas under curves, and finding curve equations. Includes 4 practice questions with step-by-step solutions by Timothy Gan.
Understanding Applications of Integration
Basic Rules of Definite Integral
- $F(x)$ is the antiderivative (integral) of $f(x)$
- $a$ is the lower limit of integration
- $b$ is the upper limit of integration
- The result $F(b) - F(a)$ gives us the exact area under the curve between $x = a$ and $x = b$
- The constant of integration $c$ cancels out in definite integrals, so we don't include it
- The result is always a number, not a function
- Definite integrals represent the net area between the curve and the x-axis
- The notation $\left[F(x)\right]_a^b$ is often used as shorthand for $F(b) - F(a)$
Understanding Properties of Definite Integrals
Integration as the Reverse of Differentiation
- Factor out or multiply by constants
- Account for missing or extra coefficients
- Recognize that $\int k \cdot f(x)\,dx = k \cdot \int f(x)\,dx$
Finding the Equation of a Curve
- Physics: Finding position from velocity, or velocity from acceleration
- Economics: Finding total cost from marginal cost
- Engineering: Finding displacement from rate of change
- Any scenario where you know the rate of change and need to find the original quantity
Area Enclosed by the Curve and the x-axis
- When $f(x) > 0$, the curve is above the $x$-axis, and the integral is positive
- When $f(x) < 0$, the curve is below the $x$-axis, and the integral is negative
- We use absolute value to ensure we calculate the total area (always positive)
- Net Area: $\int_{a}^{b} f(x)\,dx$ (can be negative if curve is below $x$-axis)
- Total Area: $\int_{a}^{b} |f(x)|\,dx$ (always positive, uses absolute value)
- If $y > 0$, curve is above the $x$-axis → area is $\int f(x)\,dx$
- If $y < 0$, curve is below the $x$-axis → area is $-\int f(x)\,dx$ or $\int |f(x)|\,dx$
- Single Region: If the curve doesn't cross the $x$-axis between $a$ and $b$, use one integral with absolute value
- Multiple Regions: If the curve crosses the $x$-axis, split into multiple integrals
- Symmetry: For symmetric curves, you can calculate half the area and double it
- Always check the sign: Determine whether each region is above or below the axis
- If $f(x) > 0$ on $[a, c]$ and $f(x) < 0$ on $[c, b]$:
Area Enclosed by the Curve and the y-axis
- The curve equation must be expressed as $x = g(y)$ (not $y = f(x)$)
- The integral is with respect to $dy$ (not $dx$)
- The limits $a$ and $b$ are $y$-values (not $x$-values)
- We integrate from bottom to top along the $y$-axis
- Find where the curve intersects the $y$-axis (if applicable)
- Identify any given horizontal boundary lines ($y = a$, $y = b$)
- If the region is to the right of the $y$-axis, $x$ values are positive
- If the region is to the left of the $y$-axis, $x$ values are negative (use absolute value)
- For regions on both sides of the $y$-axis, split into separate integrals
- The absolute value ensures we get a positive area: $|x|$ or consider $\int |g(y)|\,dy$
Area Between Two Curves
- Area under upper curve: $\int_{a}^{b} f(x)\,dx$
- Minus area under lower curve: $-\int_{a}^{b} g(x)\,dx$
- Combined: $\int_{a}^{b} [f(x) - g(x)]\,dx$
- If $f(x_0) > g(x_0)$, then $f(x)$ is the upper curve
- If $g(x_0) > f(x)$, then $g(x)$ is the upper curve
- The result should always be positive (it's an area!)
- If you get a negative answer, you subtracted in the wrong order
- Sketch the curves if possible to visualize which is on top
- Economics: Consumer surplus = area between demand curve and price line
- Engineering: Net force = area between two pressure curves
- Physics: Work done = area between force curves
- Statistics: Probability = area between distribution curves
- Upper: $y = 2(1) = 2$
- Lower: $y = 1^2 = 1$
- So $2x$ is above $x^2$
Practice Questions with Detailed Solutions
Work through these problems to master applications of integration
Question
Step-by-Step Solution
- 1(a) Evaluate $\int_{1}^{6} (3x-1)\,dx$:
- 2First, find the indefinite integral:
- 3$\int (3x-1)\,dx = \frac{3x^2}{2} - x$
- 4Now evaluate at the limits:
- 5$\left[\frac{3x^2}{2} - x\right]_1^6 = \left(\frac{3(6)^2}{2} - 6\right) - \left(\frac{3(1)^2}{2} - 1\right)$
- 6$= (54 - 6) - (\frac{3}{2} - 1)$
- 7$= 48 - \frac{1}{2} = \frac{95}{2}$
- 8(b) Evaluate $\int_{2}^{4} \left(\frac{3}{x^4}+1\right)dx$:
- 9Rewrite as: $\int_{2}^{4} (3x^{-4}+1)\,dx$
- 10$= \left[\frac{3x^{-3}}{-3} + x\right]_2^4 = \left[-x^{-3} + x\right]_2^4$
- 11$= \left(-\frac{1}{64} + 4\right) - \left(-\frac{1}{8} + 2\right)$
- 12$= \frac{255}{64} - \frac{15}{8} = \frac{255}{64} - \frac{120}{64} = \frac{135}{64}$
- 13(c) Evaluate $\int_{1}^{6} \sqrt{x+3}\,dx$:
- 14Rewrite as: $\int_{1}^{6} (x+3)^{1/2}\,dx$
- 15$= \left[\frac{(x+3)^{3/2}}{3/2}\right]_1^6 = \left[\frac{2}{3}(x+3)^{3/2}\right]_1^6$
- 16$= \frac{2}{3}(9)^{3/2} - \frac{2}{3}(4)^{3/2}$
- 17$= \frac{2}{3}(27) - \frac{2}{3}(8) = 18 - \frac{16}{3} = \frac{38}{3}$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1(a) Using the constant multiple property:
- 2$\int_{-2}^{5} 3f(x)\,dx = 3 \int_{-2}^{5} f(x)\,dx$
- 3$= 3 \times 14 = 42$
- 4(b) Using the reverse limits and difference properties:
- 5$\int_{5}^{-2} [f(x)-3x]\,dx = -\int_{-2}^{5} [f(x)-3x]\,dx$
- 6$= -\left[\int_{-2}^{5} f(x)\,dx - \int_{-2}^{5} 3x\,dx\right]$
- 7Evaluate $\int_{-2}^{5} 3x\,dx$:
- 8$\int_{-2}^{5} 3x\,dx = \left[\frac{3x^2}{2}\right]_{-2}^5 = \frac{3(25)}{2} - \frac{3(4)}{2} = \frac{75}{2} - 6 = \frac{63}{2}$
- 9Therefore:
- 10$-\left[14 - \frac{63}{2}\right] = -\left[\frac{28-63}{2}\right] = -\left[-\frac{35}{2}\right] = \frac{35}{2}$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Part 1: Differentiate $x\cos 3x$
- 2Using the product rule: $\frac{d}{dx}[uv] = u'v + uv'$
- 3Let $u = x$ and $v = \cos 3x$
- 4$\frac{du}{dx} = 1$ and $\frac{dv}{dx} = -3\sin 3x$
- 5$\frac{d}{dx}[x\cos 3x] = (1)(\cos 3x) + (x)(-3\sin 3x)$
- 6$= \cos 3x - 3x\sin 3x$
- 7Part 2: Find the integral
- 8From part 1, we know:
- 9$\cos 3x - 3x\sin 3x = \frac{d}{dx}[x\cos 3x]$
- 10Rearranging for $x\sin 3x$:
- 11$-3x\sin 3x = \frac{d}{dx}[x\cos 3x] - \cos 3x$
- 12$x\sin 3x = -\frac{1}{3}\frac{d}{dx}[x\cos 3x] + \frac{1}{3}\cos 3x$
- 13Integrating both sides:
- 14$\int x\sin 3x\,dx = -\frac{1}{3}x\cos 3x + \frac{1}{3} \cdot \frac{\sin 3x}{3} + c$
- 15$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + c$
- 16Now evaluate the definite integral:
- 17$\int_{0}^{\frac{\pi}{9}} x\sin 3x\,dx = \left[-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x\right]_0^{\frac{\pi}{9}}$
- 18At $x = \frac{\pi}{9}$: $3x = \frac{\pi}{3}$, so $\cos\frac{\pi}{3} = \frac{1}{2}$ and $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$
- 19$= \left[-\frac{1}{3} \cdot \frac{\pi}{9} \cdot \frac{1}{2} + \frac{1}{9} \cdot \frac{\sqrt{3}}{2}\right] - [0]$
- 20$= -\frac{\pi}{54} + \frac{\sqrt{3}}{18} = \frac{\sqrt{3}}{18} - \frac{\pi}{54}$ ✓
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Integrate the gradient function
- 2$y = \int (2x+1)^2\,dx$
- 3$= \frac{(2x+1)^3}{2 \times 3} + c$
- 4$= \frac{(2x+1)^3}{6} + c$
- 5Step 2: Use the given point to find $c$
- 6The curve passes through $\left(-2, \frac{1}{2}\right)$, so substitute $x = -2$ and $y = \frac{1}{2}$:
- 7$\frac{1}{2} = \frac{(2(-2)+1)^3}{6} + c$
- 8$\frac{1}{2} = \frac{(-4+1)^3}{6} + c$
- 9$\frac{1}{2} = \frac{(-3)^3}{6} + c$
- 10$\frac{1}{2} = \frac{-27}{6} + c$
- 11$\frac{1}{2} = -\frac{9}{2} + c$
- 12$c = \frac{1}{2} + \frac{9}{2} = \frac{10}{2} = 5$
- 13Step 3: Write the final equation
- 14$y = \frac{(2x+1)^3}{6} + 5$
- 15Or equivalently: $y = \frac{1}{6}(2x+1)^3 + 5$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Integrate to find the first derivative
- 2Given: $\frac{d^2y}{dx^2} = \frac{18}{(x-2)^3} = 18(x-2)^{-3}$
- 3Integrate to find $\frac{dy}{dx}$:
- 4$\frac{dy}{dx} = \int 18(x-2)^{-3}\,dx = 18 \cdot \frac{(x-2)^{-2}}{-2} + c_1$
- 5$= -9(x-2)^{-2} + c_1 = -\frac{9}{(x-2)^2} + c_1$
- 6Step 2: Use the condition at $(5, 20)$ to find $c_1$
- 7At $(5, 20)$, the gradient is $2$:
- 8$2 = -\frac{9}{(5-2)^2} + c_1$
- 9$2 = -\frac{9}{9} + c_1$
- 10$2 = -1 + c_1$
- 11$c_1 = 3$
- 12Therefore: $\frac{dy}{dx} = -\frac{9}{(x-2)^2} + 3$
- 13Step 3: Integrate to find $y$
- 14$y = \int \left(-\frac{9}{(x-2)^2} + 3\right)dx$
- 15$= -9 \cdot \frac{(x-2)^{-1}}{-1} + 3x + c_2$
- 16$= \frac{9}{x-2} + 3x + c_2$
- 17Step 4: Use point $(5, 20)$ to find $c_2$
- 18$20 = \frac{9}{5-2} + 3(5) + c_2$
- 19$20 = 3 + 15 + c_2$
- 20$c_2 = 2$
- 21Equation of curve: $y = \frac{9}{x-2} + 3x + 2$
- 22Step 5: Find where curve cuts y-axis
- 23When curve cuts y-axis, $x = 0$:
- 24$y = \frac{9}{0-2} + 3(0) + 2 = -4.5 + 0 + 2 = -2.5$
- 25Point is $(0, -2.5)$
- 26Step 6: Find gradient at this point
- 27$\frac{dy}{dx} = -\frac{9}{(0-2)^2} + 3 = -\frac{9}{4} + 3 = \frac{3}{4}$
- 28Step 7: Equation of tangent
- 29Using $y - y_1 = m(x - x_1)$ with $(0, -2.5)$ and $m = \frac{3}{4}$:
- 30$y - (-2.5) = \frac{3}{4}(x - 0)$
- 31$y = \frac{3}{4}x - 2.5$ or $4y = 3x - 10$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Find gradient of given line
- 2$5y = x + 1$ → $y = \frac{1}{5}x + \frac{1}{5}$
- 3Gradient of line = $\frac{1}{5}$
- 4Step 2: Find gradient of perpendicular
- 5If two lines are perpendicular, $m_1 \times m_2 = -1$
- 6Gradient of tangent at $(-1, 0)$ = $-5$
- 7Step 3: Use gradient condition to find $a$
- 8At $(-1, 0)$: $\frac{dy}{dx} = -5$
- 9$-5 = \frac{a}{(2(-1)+3)^6} - 1$
- 10$-5 = \frac{a}{1^6} - 1$
- 11$-5 = a - 1$
- 12$a = -4$
- 13Step 4: Find equation of curve
- 14$\frac{dy}{dx} = \frac{-4}{(2x+3)^6} - 1 = -4(2x+3)^{-6} - 1$
- 15Integrate:
- 16$y = \int [-4(2x+3)^{-6} - 1]\,dx$
- 17$= -4 \cdot \frac{(2x+3)^{-5}}{-5 \times 2} - x + c$
- 18$= \frac{2}{5(2x+3)^5} - x + c$
- 19Step 5: Use point $(-1, 0)$ to find $c$
- 20$0 = \frac{2}{5(2(-1)+3)^5} - (-1) + c$
- 21$0 = \frac{2}{5(1)^5} + 1 + c$
- 22$0 = \frac{2}{5} + 1 + c$
- 23$c = -\frac{7}{5}$
- 24Equation: $y = \frac{2}{5(2x+3)^5} - x - \frac{7}{5}$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Factorize the denominator
- 2$2 + x - x^2 = -(x^2 - x - 2) = -(x-2)(x+1)$
- 3Step 2: Set up partial fractions
- 4$\frac{4-5x}{-(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$
- 5$\frac{4-5x}{-(x-2)(x+1)} = \frac{A(x+1) + B(x-2)}{(x-2)(x+1)}$
- 6Step 3: Find A and B
- 7$4 - 5x = -[A(x+1) + B(x-2)]$
- 8$4 - 5x = -A(x+1) - B(x-2)$
- 9Let $x = 2$:
- 10$4 - 10 = -A(3) - 0$
- 11$-6 = -3A$
- 12$A = 2$
- 13Let $x = -1$:
- 14$4 + 5 = 0 - B(-3)$
- 15$9 = 3B$
- 16$B = 3$
- 17Therefore: $\frac{4-5x}{2+x-x^2} = \frac{2}{x-2} + \frac{3}{x+1}$
- 18Step 4: Integrate
- 19$\int_0^1 \frac{4-5x}{2+x-x^2}\,dx = \int_0^1 \left(\frac{2}{x-2} + \frac{3}{x+1}\right)dx$
- 20$= [2\ln|x-2| + 3\ln|x+1|]_0^1$
- 21$= [2\ln|-1| + 3\ln|2|] - [2\ln|-2| + 3\ln|1|]$
- 22$= [2\ln 1 + 3\ln 2] - [2\ln 2 + 0]$
- 23$= [0 + 3\ln 2] - [2\ln 2]$
- 24$= \ln 2$
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Expand the curve equation
- 2$y = (3x - 2)(x + 2)$
- 3$= 3x^2 + 6x - 2x - 4$
- 4$= 3x^2 + 4x - 4$
- 5Step 2: Find x-intercepts (where curve crosses x-axis)
- 6Set $y = 0$:
- 7$(3x - 2)(x + 2) = 0$
- 8$3x - 2 = 0$ or $x + 2 = 0$
- 9$x = \frac{2}{3}$ or $x = -2$
- 10Step 3: Determine if curve is above or below x-axis
- 11Test a point between $x = -2$ and $x = \frac{2}{3}$, say $x = 0$:
- 12$y = (3(0) - 2)(0 + 2) = (-2)(2) = -4 < 0$
- 13So the curve is below the x-axis between these points
- 14Step 4: Set up integral with absolute value
- 15Since the curve is below the x-axis, we need the absolute value for positive area:
- 16$\text{Area} = \left|\int_{-2}^{2/3} (3x^2 + 4x - 4)\,dx\right|$
- 17Step 5: Integrate
- 18$= \left|\left[\frac{3x^3}{3} + \frac{4x^2}{2} - 4x\right]_{-2}^{2/3}\right|$
- 19$= \left|\left[x^3 + 2x^2 - 4x\right]_{-2}^{2/3}\right|$
- 20Step 6: Evaluate at limits
- 21At $x = \frac{2}{3}$:
- 22$\left(\frac{2}{3}\right)^3 + 2\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) = \frac{8}{27} + 2 \cdot \frac{4}{9} - \frac{8}{3}$
- 23$= \frac{8}{27} + \frac{8}{9} - \frac{8}{3} = \frac{8}{27} + \frac{24}{27} - \frac{72}{27} = \frac{-40}{27}$
- 24At $x = -2$:
- 25$(-2)^3 + 2(-2)^2 - 4(-2) = -8 + 8 + 8 = 8$
- 26Step 7: Calculate area
- 27$\text{Area} = \left|\frac{-40}{27} - 8\right| = \left|\frac{-40}{27} - \frac{216}{27}\right|$
- 28$= \left|\frac{-256}{27}\right| = \frac{256}{27}$ square units
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Identify the boundaries
- 2
- Curve: $x = y^2 - 9$
- 3
- Left boundary: $y$-axis (where $x = 0$)
- 4
- Top boundary: $y = 4$
- 5
- Need to find bottom boundary
- 6Step 2: Find where curve intersects y-axis
- 7Set $x = 0$:
- 8$0 = y^2 - 9$
- 9$y^2 = 9$
- 10$y = \pm 3$
- 11Since we're going up to $y = 4$, we use $y = 3$ (upper intersection)
- 12But we also need to consider from where the region starts.
- 13Step 3: Sketch and understand the region
- 14The parabola $x = y^2 - 9$ opens to the right with vertex at $(-9, 0)$
- 15At $y = 0$: $x = -9$
- 16At $y = 3$: $x = 0$ (on y-axis)
- 17At $y = 4$: $x = 16 - 9 = 7$
- 18At $y = -3$: $x = 0$ (on y-axis)
- 19Step 4: Set up the integral
- 20The region is bounded by:
- 21
- Left: $y$-axis ($x = 0$)
- 22
- Right: curve ($x = y^2 - 9$)
- 23
- Bottom: $y = -3$ or check if there's another bound
- 24
- Top: $y = 4$
- 25For $y$ from $-3$ to $3$: curve is to the left of y-axis (negative $x$)
- 26For $y$ from $3$ to $4$: curve is to the right of y-axis (positive $x$)
- 27Step 5: Calculate area in two parts
- 28Area from $y = -3$ to $y = 3$ (curve left of y-axis):
- 29$A_1 = \int_{-3}^{3} |y^2 - 9|\,dy = \int_{-3}^{3} (9 - y^2)\,dy$
- 30$= \left[9y - \frac{y^3}{3}\right]_{-3}^{3}$
- 31$= \left(27 - 9\right) - \left(-27 + 9\right) = 18 - (-18) = 36$
- 32Area from $y = 3$ to $y = 4$ (curve right of y-axis):
- 33$A_2 = \int_{3}^{4} (y^2 - 9)\,dy$
- 34$= \left[\frac{y^3}{3} - 9y\right]_{3}^{4}$
- 35$= \left(\frac{64}{3} - 36\right) - \left(9 - 27\right)$
- 36$= \left(\frac{64 - 108}{3}\right) - (-18) = \frac{-44}{3} + 18 = \frac{-44 + 54}{3} = \frac{10}{3}$
- 37Step 6: Total area
- 38$\text{Total Area} = A_1 + A_2 = 36 + \frac{10}{3} = \frac{108 + 10}{3} = \frac{118}{3}$ square units
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Step 1: Find intersection points
- 2Set the two equations equal:
- 3$-x^2 + 8x - 8 = -\frac{(x-7)^2}{7} - 1$
- 4$-x^2 + 8x - 8 = -\frac{x^2 - 14x + 49}{7} - 1$
- 5Multiply through by 7:
- 6$-7x^2 + 56x - 56 = -(x^2 - 14x + 49) - 7$
- 7$-7x^2 + 56x - 56 = -x^2 + 14x - 49 - 7$
- 8$-7x^2 + 56x - 56 = -x^2 + 14x - 56$
- 9$-7x^2 + 56x = -x^2 + 14x$
- 10$-6x^2 + 42x = 0$
- 11$-6x(x - 7) = 0$
- 12$x = 0$ or $x = 7$
- 13Step 2: Determine which curve is on top
- 14Test at $x = 3$ (midpoint):
- 15First curve: $y = -9 + 24 - 8 = 7$
- 16Second curve: $y = -\frac{16}{7} - 1 = -\frac{23}{7} \approx -3.29$
- 17So first curve $y = -x^2 + 8x - 8$ is above the second curve
- 18Step 3: Set up the integral
- 19$\text{Area} = \int_{0}^{7} [(-x^2 + 8x - 8) - (-\frac{(x-7)^2}{7} - 1)]\,dx$
- 20$= \int_{0}^{7} \left[-x^2 + 8x - 8 + \frac{(x-7)^2}{7} + 1\right]dx$
- 21$= \int_{0}^{7} \left[-x^2 + 8x - 7 + \frac{x^2 - 14x + 49}{7}\right]dx$
- 22Step 4: Simplify
- 23$= \int_{0}^{7} \left[-x^2 + 8x - 7 + \frac{x^2}{7} - 2x + 7\right]dx$
- 24$= \int_{0}^{7} \left[-x^2 + \frac{x^2}{7} + 6x\right]dx$
- 25$= \int_{0}^{7} \left[\frac{-7x^2 + x^2}{7} + 6x\right]dx$
- 26$= \int_{0}^{7} \left[\frac{-6x^2}{7} + 6x\right]dx$
- 27Step 5: Integrate
- 28$= \left[\frac{-6x^3}{21} + \frac{6x^2}{2}\right]_{0}^{7}$
- 29$= \left[\frac{-2x^3}{7} + 3x^2\right]_{0}^{7}$
- 30Step 6: Evaluate
- 31$= \left(\frac{-2(343)}{7} + 3(49)\right) - 0$
- 32$= -98 + 147 = 49$ square units
Video Solution
Watch the step-by-step video explanation for this question
Question
Step-by-Step Solution
- 1Part (a): Find values of p and q
- 2
- 3Finding q (y-intercept of curve):
- 4The curve cuts the y-axis at $(0, q)$, so substitute $x = 0$:
- 5$q = 2\ln(0 + 3) = 2\ln 3$
- 6
- 7Finding p (y-coordinate where line meets curve at x = -1):
- 8Substitute $x = -1$ into the curve equation:
- 9$p = 2\ln(-1 + 3) = 2\ln 2$
- 10
- 11Part (b): Calculate area of shaded region
- 12
- 13Step 1: Find equation of the line
- 14The line passes through $(-1, p) = (-1, 2\ln 2)$ and $(0, 0.5)$
- 15Gradient: $m = \frac{0.5 - 2\ln 2}{0 - (-1)} = \frac{0.5 - 2\ln 2}{1} = 0.5 - 2\ln 2$
- 16Using point-slope form with point $(0, 0.5)$:
- 17$y - 0.5 = (0.5 - 2\ln 2)(x - 0)$
- 18$y = (0.5 - 2\ln 2)x + 0.5$
- 19
- 20Step 2: Set up the area integral
- 21The shaded region is bounded by:
- 22
- The curve: $y = 2\ln(x + 3)$
- 23
- The line: $y = (0.5 - 2\ln 2)x + 0.5$
- 24
- Between $x = -1$ and $x = 0$
- 25
- 26Since the line is above the curve in this region:
- 27$\text{Area} = \int_{-1}^{0} [(0.5 - 2\ln 2)x + 0.5 - 2\ln(x + 3)]\,dx$
- 28
- 29Step 3: Integrate each term
- 30$= \int_{-1}^{0} (0.5 - 2\ln 2)x\,dx + \int_{-1}^{0} 0.5\,dx - \int_{-1}^{0} 2\ln(x + 3)\,dx$
- 31
- 32First integral: $\int (0.5 - 2\ln 2)x\,dx = (0.5 - 2\ln 2)\frac{x^2}{2}$
- 33
- 34Second integral: $\int 0.5\,dx = 0.5x$
- 35
- 36Third integral: $\int 2\ln(x + 3)\,dx$ (use integration by parts)
- 37Let $u = 2\ln(x+3)$, $dv = dx$
- 38Then $du = \frac{2}{x+3}dx$, $v = x$
- 39$\int 2\ln(x + 3)\,dx = 2x\ln(x+3) - \int \frac{2x}{x+3}\,dx$
- 40$= 2x\ln(x+3) - 2\int \frac{x+3-3}{x+3}\,dx$
- 41$= 2x\ln(x+3) - 2\int \left(1 - \frac{3}{x+3}\right)dx$
- 42$= 2x\ln(x+3) - 2(x - 3\ln(x+3))$
- 43$= 2x\ln(x+3) - 2x + 6\ln(x+3)$
- 44$= 2(x+3)\ln(x+3) - 2x$
- 45
- 46Step 4: Evaluate the definite integral
- 47$\text{Area} = \left[\frac{(0.5 - 2\ln 2)x^2}{2} + 0.5x - 2(x+3)\ln(x+3) + 2x\right]_{-1}^{0}$
- 48
- 49At $x = 0$:
- 50$= 0 + 0 - 2(3)\ln 3 + 0 = -6\ln 3$
- 51
- 52At $x = -1$:
- 53$= \frac{(0.5 - 2\ln 2)(1)}{2} + 0.5(-1) - 2(2)\ln 2 + 2(-1)$
- 54$= \frac{0.5 - 2\ln 2}{2} - 0.5 - 4\ln 2 - 2$
- 55$= 0.25 - \ln 2 - 0.5 - 4\ln 2 - 2$
- 56$= -2.25 - 5\ln 2$
- 57
- 58Step 5: Calculate final area
- 59$\text{Area} = [-6\ln 3] - [-2.25 - 5\ln 2]$
- 60$= -6\ln 3 + 2.25 + 5\ln 2$
- 61$= 5\ln 2 - 6\ln 3 + 2.25$
- 62$= 5\ln 2 - 6\ln 3 + \frac{9}{4}$ square units
Video Solutions
Watch the step-by-step video explanations for each part
Part (a)
Part (b)
Key Formulas to Remember
Note: Evaluate antiderivative at upper limit minus lower limit
Note: Swapping limits negates the integral
Note: Adjacent intervals can be added
Note: Constants can be factored out
Note: Integrals can be split by addition/subtraction
Ready to Master Additional Math?
Join our Additional Mathematics tuition classes or enroll in our comprehensive online course to achieve distinction in your O Level exams.