Differentiation Techniques & Applications for O Level A Math
Master differentiation for O Level & IGCSE Additional Mathematics (4047/0606). Learn chain rule, product rule, quotient rule, tangent/normal equations, and stationary points. Includes 14 practice questions with step-by-step video solutions by Timothy Gan.
Understanding Differentiation and Its Applications
Basic Differentiation Rules
Advanced Techniques
Stationary Points & Optimization
Special Functions
📐Basic Differentiation Rules
Derivative as a Gradient Function
- If $\frac{dy}{dx} > 0$, the function is increasing (gradient is positive)
- If $\frac{dy}{dx} < 0$, the function is decreasing (gradient is negative)
- If $\frac{dy}{dx} = 0$, there is a stationary point (horizontal tangent)
Derivative As Gradient Function
Derivative as Power Functions
- $y = x^3 \Rightarrow \frac{dy}{dx} = 3x^2$
- $y = x^{-2} \Rightarrow \frac{dy}{dx} = -2x^{-3}$
- $y = \sqrt{x} = x^{1/2} \Rightarrow \frac{dy}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
- $y = \frac{1}{x^3} = x^{-3} \Rightarrow \frac{dy}{dx} = -3x^{-4} = -\frac{3}{x^4}$
Derivative As Power Functions
Scalar Multiple Rule
- $y = 5x^3 \Rightarrow \frac{dy}{dx} = 5 \cdot 3x^2 = 15x^2$
- $y = -2x^4 \Rightarrow \frac{dy}{dx} = -2 \cdot 4x^3 = -8x^3$
- $y = \frac{3}{x^2} = 3x^{-2} \Rightarrow \frac{dy}{dx} = 3 \cdot (-2)x^{-3} = -6x^{-3} = -\frac{6}{x^3}$
Scalar Multiple
Addition and Subtraction Rule
Addition and Subtraction Rule
🎯Advanced Techniques
Chain Rule
Chain Rule
Product Rule
Product Rule
Quotient Rule
Quotient Rule
⚙️Applications
Equations of Tangents and Normals
Connected Rates of Change
📊Stationary Points & Optimization
Increasing and Decreasing Functions
- If $\frac{dy}{dx} > 0$ for all $x$ in an interval, then $y$ is increasing in that interval
- If $\frac{dy}{dx} < 0$ for all $x$ in an interval, then $y$ is decreasing in that interval
- If $\frac{dy}{dx} = 0$ at a point, that point might be a stationary point
- $x < -2$: $\frac{dy}{dx} = 6(-)(-) = (+)$ → increasing
- $-2 < x < 1$: $\frac{dy}{dx} = 6(+)(-) = (-)$ → decreasing
- $x > 1$: $\frac{dy}{dx} = 6(+)(+) = (+)$ → increasing
Increasing and Decreasing Functions
Stationary Points
Stationary Points
First Derivative Test
- If $\frac{dy}{dx}$ changes from $+$ to $-$: Maximum point
- If $\frac{dy}{dx}$ changes from $-$ to $+$: Minimum point
- If $\frac{dy}{dx}$ doesn't change sign: Point of inflection
- Test $x = -2$: $\frac{dy}{dx} = 3(-2)^2 - 3 = 9 > 0$ (positive, increasing)
- Test $x = 0$: $\frac{dy}{dx} = 3(0)^2 - 3 = -3 < 0$ (negative, decreasing)
- Gradient changes from $+$ to $-$ → Maximum point at $(-1, 4)$
- Test $x = 0$: $\frac{dy}{dx} = 3(0)^2 - 3 = -3 < 0$ (negative, decreasing)
- Test $x = 2$: $\frac{dy}{dx} = 3(2)^2 - 3 = 9 > 0$ (positive, increasing)
- Gradient changes from $-$ to $+$ → Minimum point at $(1, 0)$
First Derivative Test
Second Derivative Test
- If $\frac{d^2y}{dx^2} < 0$: Maximum point (curve is concave down, like ∩)
- If $\frac{d^2y}{dx^2} > 0$: Minimum point (curve is concave up, like ∪)
- If $\frac{d^2y}{dx^2} = 0$: Test is inconclusive (use first derivative test instead)
- When $\frac{d^2y}{dx^2} > 0$, the gradient is increasing, which means the curve is bending upward (minimum)
- When $\frac{d^2y}{dx^2} < 0$, the gradient is decreasing, which means the curve is bending downward (maximum)
Second Derivative Test
Maximum and Minimum Values
- Local Maximum/Minimum: The highest/lowest value in a small region around a point (what we find at stationary points)
- Absolute Maximum/Minimum: The highest/lowest value over the entire domain
- The absolute extrema can occur at:
- At $x = -2$: $y = (-2)^3 - 3(-2) = -8 + 6 = -2$
- At $x = -1$: $y = (-1)^3 - 3(-1) = -1 + 3 = 2$
- At $x = 1$: $y = 1^3 - 3(1) = 1 - 3 = -2$
- At $x = 3$: $y = 3^3 - 3(3) = 27 - 9 = 18$
- Maximum value: $y = 18$ at $x = 3$
- Minimum value: $y = -2$ at $x = -2$ and $x = 1$
Maximum and Minimum Value
✨Special Functions
Basics of Trigonometric Derivatives
- $\frac{d}{dx}(\sin x) = \cos x$
- $\frac{d}{dx}(\cos x) = -\sin x$
- $\frac{d}{dx}(\tan x) = \sec^2 x$
Basics of Trigonometric Derivative
Basics of Logarithmic Derivatives
- $\frac{d}{dx}(\ln x) = \frac{1}{x}$ for $x > 0$
Basics of Logarithmic Derivative
Basics of Exponential Derivatives
- $\frac{d}{dx}(e^x) = e^x$
- $\frac{d}{dx}(a^x) = a^x \ln a$ for $a > 0, a \neq 1$
- $e^{\ln x} = x$ for $x > 0$
- $\ln(e^x) = x$ for all $x$
- Population growth models: $P(t) = P_0 e^{rt}$
- Radioactive decay: $N(t) = N_0 e^{-\lambda t}$
- Compound interest: $A = Pe^{rt}$
- Natural phenomena involving continuous growth or decay
Basics of Exponential Derivative
Practice Questions with Video Solutions
Watch step-by-step video explanations for each question to master the concepts
Question
Video Solution
Step-by-Step Solution
- 1(a) Using chain rule: $y = (7x^3 + x)^4$
- 2Let $u = 7x^3 + x$, then $y = u^4$
- 3$\frac{dy}{du} = 4u^3$ and $\frac{du}{dx} = 21x^2 + 1$
- 4$\frac{dy}{dx} = 4(7x^3 + x)^3(21x^2 + 1)$
- 5(b) Rewrite as $f(x) = (3x^2 - 1)^{-1/2}$
- 6Using chain rule: $f'(x) = -\frac{1}{2}(3x^2 - 1)^{-3/2} \times 6x$
- 7$f'(x) = -3x(3x^2 - 1)^{-3/2} = -\frac{3x}{(3x^2-1)^{3/2}}$
- 8(c) Rewrite as $y = 2(3 - x^{1/2})^{-3}$
- 9Using chain rule: $\frac{dy}{dx} = 2 \times (-3)(3 - x^{1/2})^{-4} \times (-\frac{1}{2}x^{-1/2})$
- 10$= -6(3 - \sqrt{x})^{-4} \times (-\frac{1}{2\sqrt{x}}) = \frac{3}{\sqrt{x}(3-\sqrt{x})^4}$
Question
Video Solution
Step-by-Step Solution
- 1Let $u = \sqrt{x} = x^{1/2}$ and $v = (x^2 + 2)^5$
- 2Using product rule: $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
- 3$\frac{du}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
- 4Using chain rule for $v$: $\frac{dv}{dx} = 5(x^2 + 2)^4 \times 2x = 10x(x^2 + 2)^4$
- 5$\frac{dy}{dx} = \sqrt{x} \cdot 10x(x^2 + 2)^4 + (x^2 + 2)^5 \cdot \frac{1}{2\sqrt{x}}$
- 6$= 10x^{3/2}(x^2 + 2)^4 + \frac{(x^2 + 2)^5}{2\sqrt{x}}$
- 7Factor out common terms: $= \frac{(x^2+2)^4}{2\sqrt{x}}[20x^2 + (x^2+2)]$
- 8$= \frac{(x^2+2)^4}{2\sqrt{x}}(21x^2 + 2)$
Question
Video Solution
Step-by-Step Solution
- 1Let $u = x + 1$ and $v = \sqrt{3x^2 - 1} = (3x^2 - 1)^{1/2}$
- 2Using quotient rule: $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
- 3$\frac{du}{dx} = 1$
- 4Using chain rule for $v$: $\frac{dv}{dx} = \frac{1}{2}(3x^2-1)^{-1/2} \times 6x = \frac{3x}{\sqrt{3x^2-1}}$
- 5$\frac{dy}{dx} = \frac{\sqrt{3x^2-1} \cdot 1 - (x+1) \cdot \frac{3x}{\sqrt{3x^2-1}}}{3x^2-1}$
- 6Multiply numerator by $\sqrt{3x^2-1}$:
- 7$= \frac{(3x^2-1) - 3x(x+1)}{(3x^2-1)^{3/2}}$
- 8$= \frac{3x^2-1-3x^2-3x}{(3x^2-1)^{3/2}} = \frac{-3x-1}{(3x^2-1)^{3/2}}$
Question
Video Solution
Step-by-Step Solution
- 1First, expand the expression: $y = (x-1)(2x+3) = 2x^2 + 3x - 2x - 3 = 2x^2 + x - 3$
- 2Differentiate: $\frac{dy}{dx} = 4x + 1$
- 3Evaluate at $x = 2$:
- 4$\frac{dy}{dx}\Big|_{x=2} = 4(2) + 1 = 9$
Question
Video Solution
Step-by-Step Solution
- 1Since $(1, 3)$ lies on the curve: $3 = a(1)^2 + b(1) = a + b$ ... (1)
- 2Differentiate: $\frac{dy}{dx} = 2ax + b$
- 3At $x = 1$, gradient is $5$: $5 = 2a(1) + b = 2a + b$ ... (2)
- 4Subtract equation (1) from equation (2):
- 5$(2a + b) - (a + b) = 5 - 3$
- 6$a = 2$
- 7Substitute $a = 2$ into equation (1):
- 8$2 + b = 3$
- 9$b = 1$
Question
Video Solution
Step-by-Step Solution
- 1Find the $y$-coordinate at $x = -2$:
- 2$y = (-2)^3 + (-2)^2 - 4(-2) - 3 = -8 + 4 + 8 - 3 = 1$
- 3Point is $(-2, 1)$
- 4Find the gradient: $\frac{dy}{dx} = 3x^2 + 2x - 4$
- 5At $x = -2$: $\frac{dy}{dx} = 3(-2)^2 + 2(-2) - 4 = 12 - 4 - 4 = 4$
- 6Tangent equation using $y - y_1 = m(x - x_1)$:
- 7$y - 1 = 4(x - (-2))$
- 8$y - 1 = 4x + 8$
- 9$y = 4x + 9$
- 10Normal gradient = $-\frac{1}{4}$ (negative reciprocal)
- 11Normal equation:
- 12$y - 1 = -\frac{1}{4}(x + 2)$
- 13$y - 1 = -\frac{1}{4}x - \frac{1}{2}$
- 14$y = -\frac{1}{4}x + \frac{1}{2}$
Question
Video Solution
Step-by-Step Solution
- 1At $x = -2$: $y = 3(-2)^2 + 5(-2) - 9 = 12 - 10 - 9 = -7$
- 2Point is $(-2, -7)$
- 3$\frac{dy}{dx} = 6x + 5$
- 4At $x = -2$: $\frac{dy}{dx} = 6(-2) + 5 = -7$
- 5Normal gradient = $\frac{1}{7}$ (negative reciprocal of $-7$)
- 6Normal equation: $y - (-7) = \frac{1}{7}(x - (-2))$
- 7$y + 7 = \frac{1}{7}(x + 2)$
- 8$7y + 49 = x + 2$
- 9$x = 7y + 47$ or $y = \frac{x-47}{7}$
- 10To find intersection with curve, substitute into curve equation:
- 11$y = 3x^2 + 5x - 9$ and $y = \frac{1}{7}x - \frac{45}{7}$
- 12$3x^2 + 5x - 9 = \frac{1}{7}x - \frac{45}{7}$
- 13$21x^2 + 35x - 63 = x - 45$
- 14$21x^2 + 34x - 18 = 0$
- 15Using quadratic formula or factoring: $x = -2$ (known point) or $x = \frac{3}{7}$
- 16At $x = \frac{3}{7}$: $y = 3(\frac{3}{7})^2 + 5(\frac{3}{7}) - 9 = \frac{27}{49} + \frac{15}{7} - 9 = -\frac{390}{49} = -\frac{390}{49}$
Question
Video Solution
Step-by-Step Solution
- 1The line $y = 2x - 3$ has gradient $2$
- 2For the normal to be parallel, normal gradient = $2$
- 3If normal gradient = $2$, then tangent gradient = $-\frac{1}{2}$ (negative reciprocal)
- 4Find $\frac{dy}{dx}$: $\frac{dy}{dx} = 6x - 2$
- 5Set $\frac{dy}{dx} = -\frac{1}{2}$:
- 6$6x - 2 = -\frac{1}{2}$
- 7$6x = 2 - \frac{1}{2} = \frac{3}{2}$
- 8$x = \frac{1}{4}$
- 9Find $y$-coordinate at $x = \frac{1}{4}$:
- 10$y = 3(\frac{1}{4})^2 - 2(\frac{1}{4}) + 1 = \frac{3}{16} - \frac{1}{2} + 1 = \frac{3}{16} - \frac{8}{16} + \frac{16}{16} = \frac{11}{16}$
Question
Video Solution
Step-by-Step Solution
- 1Volume of hemisphere: $V = \frac{2}{3}\pi r^3$
- 2Differentiate with respect to time $t$ using chain rule:
- 3$\frac{dV}{dt} = \frac{2}{3}\pi \times 3r^2 \times \frac{dr}{dt} = 2\pi r^2 \frac{dr}{dt}$
- 4Given: $\frac{dr}{dt} = 0.5$ cm/s and $r = 3$ cm
- 5Substitute:
- 6$\frac{dV}{dt} = 2\pi(3)^2(0.5) = 2\pi(9)(0.5) = 9\pi$
- 7$\frac{dV}{dt} = 9\pi \approx 28.3$ cm³/s
Question
Video Solution
Step-by-Step Solution
- 1Given: $xy = 23x - 8$
- 2When $y = 21$: $21x = 23x - 8 \Rightarrow 2x = 8 \Rightarrow x = 4$
- 3Differentiate the equation with respect to $t$ using product rule:
- 4$\frac{d}{dt}(xy) = \frac{d}{dt}(23x - 8)$
- 5$x\frac{dy}{dt} + y\frac{dx}{dt} = 23\frac{dx}{dt}$
- 6Given: $\frac{dx}{dt} = 0.03$ unit/s, $x = 4$, $y = 21$
- 7Substitute:
- 8$4\frac{dy}{dt} + 21(0.03) = 23(0.03)$
- 9$4\frac{dy}{dt} + 0.63 = 0.69$
- 10$4\frac{dy}{dt} = 0.06$
- 11$\frac{dy}{dt} = 0.015$ unit/s
Question
Video Solution
Step-by-Step Solution
- 1Point $B$ is at $(x, 2x^2 + 3)$, point $C$ is at $(x, 0)$, point $A$ is at $(6, 0)$
- 2Base of triangle $AC = 6 - x$
- 3Height of triangle $BC = y = 2x^2 + 3$
- 4Area: $T = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2}(6-x)(2x^2+3)$
- 5$T = \frac{1}{2}(12x^2 + 18 - 2x^3 - 3x)$
- 6$T = -x^3 + 6x^2 - \frac{3}{2}x + 9$
- 7Find $\frac{dT}{dx}$:
- 8$\frac{dT}{dx} = -3x^2 + 12x - \frac{3}{2}$
- 9Using chain rule: $\frac{dT}{dt} = \frac{dT}{dx} \times \frac{dx}{dt}$
- 10At $x = 2$: $\frac{dT}{dx} = -3(2)^2 + 12(2) - \frac{3}{2} = -12 + 24 - 1.5 = 10.5$
- 11Given $\frac{dT}{dt} = 0.8$ units²/s:
- 12$0.8 = 10.5 \times \frac{dx}{dt}$
- 13$\frac{dx}{dt} = \frac{0.8}{10.5} = \frac{8}{105}$ units/s
Question
Video Solution
Step-by-Step Solution
- 1For the curve to be always increasing, we need $\frac{dy}{dx} \geq 0$ for all $x$
- 2$\frac{dy}{dx} = 3x^2 + 8x + k$
- 3For $3x^2 + 8x + k \geq 0$ for all $x$, the discriminant must be $\leq 0$
- 4(A quadratic $ax^2 + bx + c \geq 0$ for all $x$ when $a > 0$ and $b^2 - 4ac \leq 0$)
- 5Here $a = 3$, $b = 8$, $c = k$
- 6Discriminant: $b^2 - 4ac = 8^2 - 4(3)(k) = 64 - 12k$
- 7For always increasing: $64 - 12k \leq 0$
- 8$64 \leq 12k$
- 9$k \geq \frac{64}{12} = \frac{16}{3}$
Question
Video Solution
Step-by-Step Solution
- 1$\frac{dy}{dx} = 3x^2 - 3$
- 2For stationary points, set $\frac{dy}{dx} = 0$:
- 3$3x^2 - 3 = 0$
- 4$x^2 = 1$
- 5$x = \pm 1$
- 6At $x = 1$: $y = 1^3 - 3(1) + 2 = 0$ → Point $(1, 0)$
- 7At $x = -1$: $y = (-1)^3 - 3(-1) + 2 = 4$ → Point $(-1, 4)$
- 8First derivative test:
- 9Test $x = -2$: $\frac{dy}{dx} = 3(-2)^2 - 3 = 9 > 0$ (increasing)
- 10Test $x = 0$: $\frac{dy}{dx} = 3(0)^2 - 3 = -3 < 0$ (decreasing)
- 11Test $x = 2$: $\frac{dy}{dx} = 3(2)^2 - 3 = 9 > 0$ (increasing)
- 12At $x = -1$: gradient changes from $+$ to $-$ → Maximum point at $(-1, 4)$
- 13At $x = 1$: gradient changes from $-$ to $+$ → Minimum point at $(1, 0)$
Question
Video Solution
Step-by-Step Solution
- 1$\frac{dy}{dx} = 6x^2 + 6x - 120$
- 2For stationary points, set $\frac{dy}{dx} = 0$:
- 3$6x^2 + 6x - 120 = 0$
- 4$x^2 + x - 20 = 0$
- 5$(x+5)(x-4) = 0$
- 6$x = -5$ or $x = 4$
- 7At $x = -5$: $y = 2(-5)^3 + 3(-5)^2 - 120(-5) + 4 = -250 + 75 + 600 + 4 = 429$
- 8Point: $(-5, 429)$
- 9At $x = 4$: $y = 2(4)^3 + 3(4)^2 - 120(4) + 4 = 128 + 48 - 480 + 4 = -300$
- 10Point: $(4, -300)$
- 11Second derivative test:
- 12$\frac{d^2y}{dx^2} = 12x + 6$
- 13At $x = -5$: $\frac{d^2y}{dx^2} = 12(-5) + 6 = -54 < 0$ → Maximum point at $(-5, 429)$
- 14At $x = 4$: $\frac{d^2y}{dx^2} = 12(4) + 6 = 54 > 0$ → Minimum point at $(4, -300)$
Key Formulas to Remember
$\frac{d}{dx}(x^n) = nx^{n-1}$Note: Fundamental rule for differentiating powers of $x$
$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$Note: Used for composite functions (function within a function)
$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$Note: Used when differentiating a product of two functions
$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$Note: Used when differentiating a quotient of two functions
$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$Note: Relates rates of change using the chain rule
$\frac{d}{dx}(c) = 0$ (constant)$\frac{d}{dx}(x) = 1$Tangent gradient at point: $m = \frac{dy}{dx}$Normal gradient: $m_{normal} = -\frac{1}{m_{tangent}}$Stationary point: $\frac{dy}{dx} = 0$Maximum: $\frac{d^2y}{dx^2} < 0$Minimum: $\frac{d^2y}{dx^2} > 0$
Ready to Master Additional Math?
Sign up for our Free Mini-Courses and try our well-structured curriculum to see how it can help maximize your learning in mathematics online.